
Layered and Collecting NDFS with Subsumption for Parametric Timed Automata

Hoang Gia Nguyen, Laure Petrucci
LIPN, Université Paris 13, CNRS UMR 7030

Villetaneuse, France

Jaco van de Pol
Formal Methods and Tools, University of Twente

Enschede, Netherlands

Abstract—This paper studies the analysis and parameter syn-
thesis problems for Parametric Timed Automata (PTA) with
properties in Linear-time Temporal Logic (LTL). It introduces
a series of variations of Nested Depth-First Search (NDFS).

We first study the LTL model checking problem for PTA.
Based on a careful analysis of parametric zones, we introduce
a new layered NDFS approach to LTL model checking. We
integrate this with several techniques to prune the search space.
In particular, we apply subsumption abstraction to PTA for
the first time. We also propose heuristics on the search order
to improve the performance.

Next, we study parameter synthesis. To this end, this new
layered approach and subsumption are added to a Collecting
NDFS scheme. We implemented all algorithms in the IMITATOR

tool and analyse their efficiency in a number of experiments.

1. Introduction

Model-checking is a common approach to formally ver-
ify that a system, described by its model, satisfies some
requirement, expressed by a property in temporal logic.
Timed Automata (TA) [1] are widely and successfully used
to verify real-time systems. However, at the design phase,
when the timing constants are not yet known, the sys-
tem is incompletely specified. Parametric Timed Automata
(PTAs) [2] extend Timed Automata by allowing timing
parameters in the model, where the timing constants are
not precisely known.

In such a setting, model-checking problems become
synthesis problems, i.e. instead of simply evaluating the
truth value for the satisfaction of the formula, the set of
parameters values for which the formula holds is computed.

The means for such a computation consists in exploring
the Parametric Zone Graph (PZG), an extension of the
Zone Graph for TAs that includes parameters. Even though
the PZG may be infinite, and most problems for PTAs
are undecidable [3], semi-algorithms such as EF-synthesis
have proved successful for model-checking. Such algorithms
either return a correct answer, or do not terminate.

In [5], several strategies are studied to exhibit efficient
exploration orders for Breadth-First Search (BFS), that ad-
dress parameter synthesis for reachability properties.

This work was supported by the PHC Van Gogh project PAMPAS.

However, reachability properties are often insufficient,
and it is necessary to model-check liveness properties. These
are generally described as a Linear Temporal Logic (LTL)
formula. The LTL model-checking approach boils down to a
Büchi emptiness problem. This is achieved by the search of
accepting cycles in the state space, typically in a Depth-First
Search fashion.

Contribution. This paper presents DFS exploration to find
accepting cycles for Parametric Time Automata, using sev-
eral reductions of the state space and smart exploration
orders.

First the subsumption of [18] for Timed Automata, that
reduces the explored state space while preserving cycle
detection, is extended to the parametric case.

Furthermore, PTAs enjoy properties on the projection
of zones on the parameters which can be used to stop the
exploration of a branch at an early stage or check for cycles
in layers of the graph. Note that such a layered approach
could also be used for other types of models which exhibit
some progress measure, as is done with the sweep-line
exploration [13].

Finally, DFS for LTL model-checking usually exits as
soon as an accepting cycle is found. However, in the case of
parameter synthesis, it is desirable to obtain all parameters
for which such a cycle exists. As they may lie in different
branches, the exploration must be continued and the param-
eters zones collected all along the process. This results in a
collecting algorithm.

Related work. LTL parameter synthesis for PTA was ad-
dressed in [9], where parameter valuations are restricted
to bounded integers. We make no such restriction, giving
up decidability of the problem. Nevertheless, our semi-
algorithm either gives an exact result or does not terminate.
Although extrapolation is used in the model checking algo-
rithm of [9] as a form of abstraction, there was no early
pruning, subsumption, or layered verification. Therefore
branches had to be explored in depth, which was feasible
only due to the fact that the system is finite after extrapola-
tion. The pruning and layering introduced in our algorithm
sometimes avoids infinite branches, and provides speedup
for the finite case, as demonstrated in the experiments.

Our basic algorithm extends NDFS with subsumption
from [18] from the setting of TA to Parametric TA. Due to
the nature of the parametric zones we identified additional

pruning opportunities. Another extension of NDFS with
subsumption for TA was studied in [15]. Those authors
proved that LTL model checking for TA is inherently harder
than reachability checking for TA. They also proposed to
search accepting cycles in the subsumed state space first.
If there are no such cycles, the original system is correct.
Otherwise, the Strongly Connected Components that contain
accepting cycles must be further refined, since subsumption
may introduce accepting cycles. Our layered approach also
tends to find abstract cycles first, but it is fully integrated in
the NDFS procedure.

Outline. We first recall in Sec. 2 the basic definition of
Parametric Timed Büchi Automata and their semantics, as
well as the Parametric Zone Graph which allows for model-
checking such models. Then, Sec. 3 shows that the sub-
sumption introduced in [18] is still valid in the parametric
case. Therefore, we can provide an extension of the ndfs
algorithm with subsumption for PTBA in Sec. 4. The pa-
rameter synthesis requires obtaining all possible constraints
on accepting cycles, as described by the collecting algorithm
in Sec. 5 together with some pruning optimisations. The
experimental evaluation of these algorithms is detailed in
Sec. 6. Finally, Sec. 7 concludes and provides insight on
future work.

2. Preliminaries: Parametric Timed Büchi Au-
tomata

In this section, we recall the formalism of Parametric
Timed Büchi Automata (PTBA) and its semantics.

2.1. Clocks, parameters and constraints

We first recall the basic concepts of clocks, parameters
and constraints. Let X = {x1, . . . , xH} be a set of clocks,
i.e. real-valued variables that evolve at the same rate. A
clock valuation w is a function w : X → R+. We denote
by X = 0 the conjunction of equalities that assigns 0 to all
clocks in X . We also use a special zero-clock x0, always
equal to 0.

Let P = {p1, . . . , pM} be a set of parameters, i.e.
unknown constants. A parameter valuation v is a function
v : P → Q+. We will often identify a valuation v with the
point (v(p1), . . . , v(pM)).

In the following, let xplt denote a linear term over X∪P
of the form

∑
1≤i≤H γixi+

∑
1≤j≤M βjpj+d, with xi ∈ X ,

pj ∈ P , and γi, βj , d ∈ Z. Let plt denote a parametric linear
term over P , that is a linear term without clocks (γi = 0
for all i).

The synthesis of parameters leads to expressing con-
straints on their values in order to guarantee that the model
satisfies the expected properties.
Definition 1 (Constraints on clocks and timing parame-

ters). A constraint over X ∪ P is a conjunction of in-
equalities of the form xplt ./ xplt ′, where xplt and xplt ′

are two linear terms over X ∪P and ./ ∈ {<,≤,≥, >},

Given a constraint C and a parameter valuation v, v(C)
denotes the clock constraint over X obtained by replacing
each parameter p in C with v(p). Likewise, given a clock
valuation w, w(v(C)) denotes the closed expression ob-
tained by replacing each clock x in v(C) with w(x). We
denote by w|v the valuation over X ∪ P such that for all
clocks x, w|v(x) = w(x) and for all timing parameters p,
w|v(p) = v(p).

A valuation w|v satisfies a constraint C, denoted w|v |=
C, if the expression obtained by replacing in C each clock
and timing parameter by its valuation as in w|v evaluates to
true.

Given two constraints C1 and C2, we write C1 ⊆ C2

whenever, for any v, w, w|v |= C1 implies w|v |= C2.
Constraint True abbreviates 0 ≤ 0, so it holds for all clock
and parameter valuations.
Definition 2 (Zones and guards). A parametric zone Z is

a constraint whose linear conjuncts can be written in
the form xi − xj ./ plt , where xi, xj ∈ X ∪ {x0}. A
parametric guard g is a zone such that each of its linear
conjuncts can be written in the form xi ./ plt .

The time elapsing of a zone Z, denoted by Z↗, is the
constraint over X∪P obtained from Z by delaying all clocks
by any arbitrary amount of time. That is, Z↗ = {(w′, v) |
∃w.w|v |= Z ∧ ∀x ∈ X : w′(x) = w(x) + d, d ∈ R+}.

Given R ⊆ X , the reset of Z, denoted by [Z]R, is the
constraint obtained from Z by resetting the clocks in R to 0,
and keeping the other clocks and the parameters unchanged.

The projection of Z onto P is denoted by Z↓P . It can
be defined as ∃x1 · · · ∃xH .Z, where X = {x1, . . . , xH}.

2.2. Parametric Timed Büchi Automata

We now provide the basic definitions of Parametric
Timed Büchi Automata and their semantics.
Definition 3 (Parametric Timed Büchi Automaton). A

Parametric Timed Büchi Automaton (PTBA) is a tuple
B = (Σ, L, l0, F,X, P, I, E), where:
• Σ is a finite set of actions,
• L is a finite set of locations,
• l0 ∈ L is the initial location,
• F ⊆ L is the set of accepting locations,
• X is a set of clocks,
• P is a set of parameters,
• I is the invariant function, assigning to every l ∈ L a

guard I(l), and
• E is a set of edges (l, g, a,R, l′) where l, l′ ∈ L are the

source and target locations, g is the transition guard,
a ∈ Σ is the action, and R ⊆ X is a set of clocks to
be reset.

The actions, which can be used as synchronisation labels
in networks of PTBAs, play no role in our algorithms.
However, since actions provide convenient names for edges
in examples, we kept them in the definition.
Example 1. Fig. 1 shows a PTBA, where only location

l1 is accepting. It has two clocks x and y, and three

l0 l1
y ≤ p

l2
y ≤ q

start
y := 0

x > r
move

x := 0, y := 0

back

loop
x := 0, y := 0

Figure 1. A Parametric Timed Büchi Automaton

parameters p, q and r used in the guard of action move
and in the invariants of locations l1 and l2.

The concrete semantics defines a transition relation be-
tween concrete states (`, x), where ` is a location and x a
clock valuation. For the definition of the concrete semantics
of a PT(B)A, we refer to e.g. [16].

This paper focuses on the symbolic semantics instead.
Let us now recall the symbolic semantics of a PTBA,
following e.g. [5], which we will use throughout this paper.
Definition 4 (Symbolic state). A symbolic state of a PTBA

is a pair (l, Z) where l ∈ L is a location, and Z its
associated zone.

Definition 5 (Symbolic semantics). Given
B = (Σ, L, l0, F,X, P, I, E), its symbolic semantics is
the parametric zone graph PZG(B) = (S, s0,⇒), with
• S = {(l, Z) | Z ⊆ I(l)},
• s0 =

(
l0, (
∧

1≤i≤H xi = 0)↗ ∧ I(l0)
)
, and

• (l, Z)
e⇒ (l′, Z ′) if e = (l, g, a,R, l′) ∈ E and Z ′ =(

[(Z ∧ g)]R ∧ I(l′)
)↗ ∧ I(l′) with Z ′ non-empty.

We write (l, Z) ⇒ (l′, Z ′), if there exists an e ∈ E, s.t.
(l, Z)

e⇒ (l′, Z ′).

The constraint of the target symbolic state is obtained by
first intersecting the constraint of the source symbolic state
with the outgoing guard, then resetting the clocks of the
transition, making sure the target invariant is satisfied, letting
time elapse, and finally intersecting it with the invariant of
the target location.
Example 2. Fig. 2 displays the PZG of the PTBA in Fig. 1.

Definition 6 (Symbolic run of a PTA). An (infinite) sym-
bolic run of a PTA is an infinite sequence of symbolic
states starting from the initial symbolic state, s0 ⇒ s1 ⇒
s2 ⇒ · · · , such that for all 0 ≤ i, si ⇒ si+1.

Definition 7 (Accepting states and runs). A state s ∈ S
is accepting (denoted by s ∈ F), when s = (l, Zs) and
l ∈ F .
An accepting run in PZG(B) is a symbolic run π =
s0 ⇒ s1 ⇒ s2 . . . , for which there exist an infinite
number of indices i s.t. si ∈ F .

With ⇒∗ we denote the reflexive, transitive closure of
⇒. Let R(PZG(B)) = {s | s0 ⇒∗ s} denote the set of
reachable states in PZG(B).

s0 l0
x = y

s1 l1

y ≤ p
x ≥ y

s2 l2

x = y
y ≤ q

s3 l1

y ≤ p
x = y

s4 l2

x = y
y ≤ q
p > r

s5 l1

y ≤ p
x = y
p > r

start move

ba
ck

move

bac
k

m
ov

e

loop

Figure 2. A Parametric Zone Graph.

If a symbolic run has a bounded time, then it is Zeno,
i.e. an infinite number of actions can take place in a finite
time. This is considered as a modelling artefact as the
behaviour it models cannot occur in any real system. These
can be detected using model transformations such as in [6].
Therefore, w.l.o.g., we assume PTBAs are non-Zeno.

Example 3. The PTBA of Fig. 1, with its PZG in Fig. 2, has
several infinite runs in the language loopω ∪ [p ≥ r =⇒
loop∗.start.(move.back)ω]. Note that the infinite run
using only action loop is not accepting but can be
Zeno while the other ones are accepting since they visit
location l1 infinitely often but are non-Zeno as long as
r > 0, since clock x must be strictly larger than r for
action move to occur.

Definition 8 (A PTBA’s language and the emptiness
problem). The language accepted by B, denoted L(B),
is defined as the set of non-Zeno accepting runs. The
language emptiness problem for B is to check whether
L(B) = ∅.

3. Subsumption in the Parametric Zone Graph

Note that, similar to the case in timed automata, the para-
metric zone graph may be infinite. In (plain) timed automata,
extrapolations are used to obtain finite zone graphs. For
instance, k- or lu-extrapolation uses the extremal constant
values appearing as lower- or upper-bounds in clock con-
straints of the TA, in order to identify symbolic zones that
cannot be distinguished. It is not obvious how extrapolation
carries over in case clock constraints have parameters. Given
the undecidability of many problems of PTA [3], for exam-
ple EF-emptyness, we are forced to accept that parametric
zone graphs can be infinite. As a consequence, we will deal

with semi-algorithms, which either return correct answers,
or diverge.

The strategy in this paper will be to identify techniques
that avoid some infinite computations, by either reducing the
state space, or by manipulating the search order, in a way
that bugs are revealed earlier, before the algorithm would
diverge.

3.1. Subsumption abstraction

We now discuss how to carry over subsumption abstrac-
tion from timed automata to the parametric case. For timed
automata, subsumption was introduced in [12] and studied
in [18] in the context of LTL model checking. The idea is
that a symbolic state may be replaced by a “larger” one,
without losing behaviour.

Definition 9 (Subsumption v). A state s = (l, Z) ∈ S is
subsumed by another s′ = (l′, Z ′), denoted s v s′, when
l = l′ and Z ⊆ Z ′.

Definition 10 (Subsumption Abstraction). An abstraction
over the Parametric Zone Graph PZG(B) = (S, s0,⇒)
is a total mapping α : S → S s.t. for all reachable
symbolic states s, we have s v α(s).

Definition 11 (Induced PZG). An abstraction α over the
Parametric Zone Graph PZG(B) = (S, s0,⇒) induces
an abstracted Parametric Zone Graph PZGα(B) =
(Sα, α(s0),⇒α), where:
• Sα = {α(s) | s ∈ S} is the set of states, s.t. Sα ⊆ S,
• α(s0) is the initial state, and
• the transition relation is: s⇒α s′ iff there exists s′′ s.t.
s⇒ s′′ and s′ = α(s′′).

Note that if the image of the abstraction is finite, the
abstract PZG is finite as well. However, this is not always
the case. The following lemma shows that indeed abstraction
doesn’t lose behaviour.

Proposition 1 (v is a simulation relation). If s1 v s2 and
s1 ⇒ s′1 then there exists s′2 s.t. s2 ⇒ s′2 and s′1 v s′2.

Proof 1. By the definition of v, and the fact that the
symbolic transition relation ⇒ is monotone w.r.t. ⊆ of
zones.

Note that in practice, the subsumption abstraction is
defined only over the reachable state space, and it might in-
troduce extra behaviour that the unabstracted system cannot
simulate. Typically α is constructed on-the-fly, i.e. during
analysis, by only abstracting to states that have already
been found to be reachable. This makes its performance
depend heavily on the search order. In particular, finding
“large” states as early as possible can make the abstraction
coarser [11].

To emphasize that this graph can be generated on-the-
fly, we use the notation NEXT-STATE(s), which returns the
set of successor states for s: {s′ ∈ S | s⇒ s′}.

3.2. Preserving Accepting Runs with Subsumption

Recall that an accepting run from s is an infinite run
s = s0 ⇒ s1 ⇒ · · · that hits an accepting location infinitely
often.
Proposition 2. If there exists an accepting run from s and

s v s′, then there exists an accepting run from s′.

Proof 2. By Prop. 1 the infinite run from s, s1 ⇒ s2 ⇒ · · · ,
can be simulated by an abstract infinite run from s′,
s′1 ⇒ s′2 ⇒ · · · , where each si v s′i. By Def. 9, the new
run passes through the exact same locations, so it is still
accepting.

Prop. 2 shows that a subsumption abstraction preserves
Büchi emptiness in one direction. Unfortunately, PZGα(B)
may introduce accepting runs which were not present in
PZG(B). This is already the case for (plain) timed au-
tomata [18]. This can be illustrated by their example which
is prensented in Fig. 3. The figure visualises PZGα(B)
by drawing subsumed states inside subsuming states (e.g.
s3 v s1).

Still, subsumption implies a property on paths that we
can use. We adapt the results from [18] to a setting where
PZG might be infinite. In subsequent sections, we exploit
these properties to improve algorithms that implement the
PTBA emptiness check.
Proposition 3. If s⇒∗ s′, s v s′ and s ∈ F , then PZG(B)

has an accepting run.

Proof 3. Let s v s′ and s ∈ F , then by Def. 9, s′ ∈ F . Let
s⇒∗ s′, then by Prop. 1 we can simulate this same trace
from s′, leading to some s′′ s.t. s′ ⇒∗ s′′ and s′ v s′′

and s′′ ∈ F . This process can be repeated to obtain an
infinite accepting run.

We finish this section with an observation for the special
case of a finite abstraction PZGα(B):
Proposition 4. If PZGα(B) is finite and does not contain

an accepting cycle, then PZG(B) does not contain an
accepting run, hence L(B) = ∅.

Proof 4. Let PZG(B) contain an accepting run from s0.
Then PZGα(B) contains an accepting run as well from
its initial state α(s0), by Prop. 2. Since PZGα(B) is
finite and the accepting run visits infinitely many accept-
ing states, some accepting state, say s ∈ F is visited
infinitely often. Then we can construct an accepting
cycle α(s0)⇒∗ s⇒∗ s.

4. Parametric Timed Nested Depth-First
Search with Subsumption

This section extends the NDFS algorithm with subsump-
tion for TA [18] to PTA and introduces early checks and
cuts to optimise the search. The algorithm detects accepting
cycles, the absence of which implies Büchi emptiness. It is
correct for the case of finite graphs.

s0 s1

s2 s3

s0

s2

s3

s1

Z1 :=

y − x ≤ 0 ∧ y ≤ 2

y

x

2

2
Z2 := Z3 :=

y − x = 0 ∧ y ≤ 2

y

x

2

2

Figure 3. Taken from [18]. Consider the TA obtained from the PBTA in Fig. 1, by setting p = q = r = 2. The symbolic state space PZG(B) of this
TA, with `1 ∈ F , contains 4 states (shown on the left): s0, s1 = (`1, Z1), s2 = (`2, Z2) and s3 = (`1, Z3). Note that there is no accepting cycle.
The graphical representation of the zones Z1–Z3 (right) reveals that Z3 ⊆ Z1 and hence s3 v s1. As s3 v s1 and both are reachable, the subsumption
abstraction might map α(s3) = s1, introducing a cycle s1 ⇒ s2 ⇒ s1 in PZGα(B).

4.1. NDFS with subsumption for PTA

In the following, with soundness, we mean that when
NDFS reports a cycle, indeed an accepting cycle exists in
the graph, while completeness indicates that NDFS always
reports an accepting cycle if the graph contains one.

Alg. 1 Classical NDFS

1: procedure ndfs()
2: Cyan := Blue := Red := ∅
3: dfsBlue (s0)
4: report no cycle
5: procedure dfsBlue (s)
6: Cyan := Cyan ∪ {s}
7: for all t in NEXT-STATE(s) do
8: if t 6∈ Blue ∧ t 6∈ Cyan then
9: dfsBlue (t)

10: if s ∈ F then
11: dfsRed (s)
12: Blue := Blue ∪ {s}
13: Cyan := Cyan \ {s}
14: procedure dfsRed (s)
15: Red := Red ∪ {s}
16: for all t in NEXT-STATE(s) do
17: if t ∈ Cyan then report cycle
18: if t 6∈ Red then dfsRed (t)

The classical NDFS algorithm shown in Alg. 1 consists of
an outer DFS (dfsBlue) that sorts accepting states s in DFS
post-order ([10]) and an inner DFS (dfsRed) that searches
for cycles over each s, called the seed. States are maintained
in 3 colour sets:

1) Blue, states fully explored by dfsBlue ,
2) Cyan , states on the stack of dfsBlue , so they are on

the path from the initial state to the current state, and
3) Red , visited by dfsRed .

The goal of the blue search is to visit all states, and launch a
red search on all accepting states in post-order. The goal of
the red search is to detect cycles on these accepting states,
by finding edges to cyan states. These would close cycles
early, at l.17 [19].

The NDFS-algorithm with subsumption from [18] for
TA is presented in Alg. 2. Here the parts introduced by
subsumption are highlighted in light blue. We now show

why the same algorithm is valid for PTA as well. The part
highlighted in yellow is new and specific for PTA, and will
be explained in the next subsection.

As for TA, subsumption can be used to prune both
searches, but we should be careful, since PZGv(B) may
introduce additional cycles (Fig. 3). To express subsumption
checks on sets we write s v S, meaning ∃s′ ∈ S : s v s′.
And S v s, meaning ∃s′ ∈ S : s′ v s.

According to Prop. 3, a state that subsumes a state on
the cyan stack leads to a cycle. This explains the cycle
detection in l.18. According to Prop. 2, if there is a cycle
from t, then there is a cycle from all t′ with t v t′. So, if
t v Red, it cannot be on an accepting cycle, which explains
subsumption in l.19. By definition (Def. 11), PZGv(B)
contains a “larger” state for all reachable states in PZG(B),
so this is sufficient to find all accepting cycles.

Since red states do not lead to accepting cycles, red
states can even prune the blue search. We can strengthen
the condition on l.8 to t 6∈ Blue ∪ Cyan ∪ Red . However,
this is by itself of no use since, Red ⊆ Blue. Luckily, even

Alg. 2 NDFS with subsumption checks and red prune of
dfsBlue (in light-blue) and early pruning (in yellow).

1: procedure ndfs()
2: Cyan := Blue := Red := ∅
3: dfsBlue (s0)
4: report no cycle
5: procedure dfsBlue (s)
6: Cyan := Cyan ∪ {s}
7: for all t in NEXT-STATE(s) do
8: if t 6∈ Blue ∪ Cyan ∧t 6v Red
9: then dfsBlue (t)

10: if s ∈ F then
11: dfsRed (s)
12: Blue := Blue ∪ {s}
13: Cyan := Cyan \ {s}
14: procedure dfsRed (s)
15: Red := Red ∪ {s}
16: for all t in NEXT-STATE(s)
17: s.t. t =p s do
18: if Cyan v t then report cycle
19: if t 6v Red then dfsRed (t)

states subsumed by red do not lead to accepting cycles
(contraposition of Prop. 2), so we can use subsumption
again: t 6∈ Blue ∪Cyan ∧ t 6v Red , as in l.8. The benefit of
this can be illustrated using Fig. 3. Once dfsBlue backtracks
over s1, we have s1, s2, s3 ∈ Red by dfsRed at l.11. Any
hypothetical other path from s0 to a state subsumed by these
red states can be ignored.

Finally, if the algorithm reaches l.4, the algorithm has
completely traversed the subsumed state space PZGv(B),
which was apparently finite. Since no accepting cycle was
detected, by Prop. 4 the algorithm may conclude that B is
empty.

4.2. Early pruning of the red search

Some simple observation allows for avoiding unnec-
essary explorations: the projection of a zone Z onto the
parameter set P , Z↓P decreases along a path.
Notation 1. Let s = (l, Z) and s′ = (l′, Z ′). By s =p s′

we denote that Z↓P = Z ′↓P , i.e. they have the same
parametric zone. Similarly, by s ⊆p s′ we denote that
Z↓P ⊆ Z ′↓P .

Note that in both notations, the locations l and l′ may be
different, as opposed to the requirement for v.
Proposition 5. Let s, s′ be two states, s.t. s ⇒ s′. Then

s′ ⊆p s.

Proof 5. Let s = (l, Z) and s′ = (l′, Z ′). By Def. 5:
(l, Z)

e⇒ (l′, Z ′) if e = (l, g, a,R, l′) and Z ′ =(
[(Z ∧ g)]R ∧ I(l′)

)↗ ∧ I(l′).
Since the projection onto P does not contain clocks, it
is not affected by resets nor time elapsing. Hence, we
have:
Z ′↓P =

[(
[(Z ∧ g)]R ∧ I(l′)

)↗ ∧ I(l′)
]
↓P

=
[(

(Z ∧ g)↓P ∧ I(l′)
)
↓P ∧ I(l′)

]
↓P

=
(
(Z ∧ g)↓P ∧ I(l′)

)
↓P

⊆
(
Z↓P ∧ I(l′)

)
↓P

⊆ Z↓P
Prop. 5 allows for an early pruning of the red search,

as highlighted in yellow in Alg. 2. Indeed, the red search
aims at finding a cycle, which necessarily has the same
parametric zone Zs↓P for all its states. Thus, if a successor
has a smaller parametric zone Zt↓P ⊂ Zs↓P , it cannot be
part of the cycle, so should not be considered by the red
search.

4.3. Starting the red search early: A layered NDFS

As seen in Sec. 4.2, all symbolic states in an accepting
cycle have the same parametric zone Z↓P . From this prop-
erty, we can organise our search by considering layers of
states with the same parametric zone. Contrary to standard
NDFS (for automata or timed automata), a red search in a
PZG cannot interfere with a red search in another layer
of the same path, since they concern different parametric
zones.

Thus the new layered NDFS shown in Alg. 3 works layer
by layer, looking at the larger parametric zones first. The
changes from Alg. 2 are highlighted in yellow.

Notation 2. With t v=p
X we denote that ∃t′ ∈ X.t v

t′ ∧ t′ =p t. That is, t is subsumed by some element of
X in the same parametric layer.

In order to obtain a result as fast as possible, and with the
largest parametric zone as possible, we run the blue search
until the parametric zone changes (ll.13–15). The last state
thus constructed is kept as Pending (l.14), i.e. its successors
are not generated yet, and we continue the NDFS algorithm
on other branches if any. When backtracking, the deepest
accepting state in the layer will be encountered first, thus
preserving the post-order for the red search in the layer.

If an accepting cycle is found it is reported by the
algorithm, otherwise the exploration continues in the current
layer. When the layer is finished, the algorithm is applied
to the pending states (ll.4–6); the order of processing those
is left as implementation freedom. In particular, processing
large zones first tends to be more efficient.

In the red search, the comparison with cyan states at l.25
is still valid. Indeed, all cyan states are on the path leading
to the state examined; if one of them is subsumed by the
current state t, its parametric zone is smaller than or equal
to the one of t, but it is also larger than or equal to it as it
is on the path. Hence they have the same parametric zone,
and only the subsumption on clocks applies as for TA.

The comparison with red states at l.26, however, needs
to be limited to the current layer, so as not to interfere with a
previous red search on another layer. This is sufficient since
any red state encountered on the same layer should have
led, during its red search, to a cycle. A similar argument
applies to the comparison with red states of the same layer
only in the blue search at l.12.

Remark 1. Such a layered NDFS can also be applied to
automata or TA, provided the model exhibits some
progress measure that allows for determining layers.
This is similar to the sweepline approach [13].

5. Collecting NDFS for Parameter Synthesis

This section addresses the use of NDFS to synthesize
parameter values that lead to an accepting cycle, i.e. to
find all possible valuations of the parameters such that there
exists an accepting run.

To achieve synthesis, finding one accepting cycle is not
sufficient anymore: they should all be found. Therefore, the
NDFS algorithm of Sec. 4 is extended to a collecting NDFS
that continues the exploration.

The reporting of a cycle in Alg. 4 does no longer exit:
it just collects in Constraints (l.28) the constraint Zt↓P
that was just found. Moreover, in order to avoid exploring
smaller parametric zones, we will only process states that
are not contained in Constraints (l.10).

Alg. 3 Layered NDFS

1: procedure layered ndfs()
2: Cyan := Blue := Red := ∅
3: Pending := {s0}
4: while Pending 6= ∅ do
5: Pick s from Pending
6: if s 6∈ Blue then dfsBlue (s)

7: report no cycle

8: procedure dfsBlue (s)
9: Cyan := Cyan ∪ {s}

10: for all t in NEXT-STATE(s) do
11: if t 6∈ Blue ∪ Cyan
12: ∧t 6v=p Red then
13: if t ⊂p s then
14: Pending := Pending ∪ {t}
15: else
16: dfsBlue (t)

17: if s ∈ F then
18: dfsRed (s)
19: Blue := Blue ∪ {s}
20: Cyan := Cyan \ {s}

21: procedure dfsRed (s)
22: Red := Red ∪ {s}
23: for all t in NEXT-STATE(s)
24: s.t. t =p s do
25: if Cyan v t then report cycle
26: if t 6v=p Red then dfsRed (t)

6. Experiments

To evaluate the performances of our algorithms, we ran
our experiments on a Dell Precision 3620 i7-7700 3.60 GHz
with 64 GiB memory running Linux Mint 19 beta 64 bits.

6.1. Implementation

We implemented our algorithms in IMITATOR [4]
(Working version 2.9.2), where polyhedra operations are
performed using the PPL library [7].

For better performance, in algorithms 3 and 4, we reuse
the idea from the PRIOR strategy in [5] for implementing
the Pending list: each explored state is inserted in a decreas-
ing zone fashion into Pending , and thus the state having
largest zone or the state at the beginning of Pending is
popped out first. Besides, we use an additional index, storing
information on the sets of comparable zones, to speed up
the state insertion.

6.2. Experimental results

We used 25 benchmarks from the IMITATOR bench-
marks library that cover a representative selection of exam-
ples, including hardware circuits (flipflop, spsmall),
network or software protocols (BRP, FDDI-4, Fischer,

Alg. 4 Layered collecting NDFS

1: procedure layered ndfs()
2: Cyan := Blue := Red := ∅
3: Constraints := ∅
4: Pending := {s0}
5: while Pending 6= ∅ do
6: Pick s from Pending
7: if s 6∈ Blue then dfsBlue (s)

8: return Constraints

9: procedure dfsBlue (s = (ls, Zs))
10: if s↓P 6v Constraints then
11: Cyan := Cyan ∪ {s}
12: for all t in NEXT-STATE(s) do
13: if t 6∈ Blue ∪ Cyan
14: ∧ t 6v=p Red then
15: if t ⊂p s then
16: Pending := Pending ∪ {t}
17: else
18: dfsBlue (t)

19: if s ∈ F then
20: dfsRed (s)
21: Blue := Blue ∪ {s}
22: Cyan := Cyan \ {s}

23: procedure dfsRed (s)
24: Red := Red ∪ {s}
25: for all t = (lt, Zt) in NEXT-STATE(s)
26: s.t. t =p s do
27: if Cyan v t then
28: Constraints := Constraints ∪ Zt↓P
29: else if t 6v=p

Red then
30: dfsRed (t)

F3, F4, Lynch-2, Lynch-5, critical-region,
RCP, simop, WFAS), real-time systems (Thales-1,
Thales-3, Sched2.i.j), variants of a producer-
consumer (Pipeline [17]), and few additional case studies
coffee, train-gate, JLR13. Since these benchmarks
were used for reachability, they did not include an accepting
state. Hence, we have added some accepting states by hand.

In this experiment, we mainly focus on two parameter
synthesis problems. The first problem, called ECC-EX, is
the counter-example synthesis: “find at least some parameter
valuations for which an accepting cycle is found”. Counter-
example synthesis is of high practical importance, as it is
often desirable to find at least some valuations for which
an accepting cycle is found, not necessarily all existing
ones. We implemented a procedure ECC-EX that stops as
soon as some parameter valuations allowing for reaching
an accepting cycle are synthesized. In order to evaluate
the effectiveness of our new approach, we compared three
versions: plain NDFS (Alg. 1), NDFS with subsumption
(Alg. 2), and NDFS with subsumption and layering (Alg. 3).

Instead of finding some parameter valuations for a sin-
gle accepting cycle as in ECC-EX, the second problem
addressed, ECCYCLES, synthesizes all possible valuations:

“find all parameter valuations for which an accepting cycle
exists”. Note that, due to the undecidability of the EF-
emptiness problem [2], algorithms for ECCYCLES or ECC-
EX are not guaranteed to terminate.

In order to show the performance of our algorithm
LAYERCOLLECTNDFSSUB (Alg. 4) is compared with the
breadth first search STATESPACE synthesis with the inclu-
sion reduction [5] which explores all possible states of the
system. Evidently, it is not entirely fair that ECCYCLES only
explores a part of the whole state space while STATESPACE
generates it all w.r.t. the inclusion. Nevertheless, it makes
sense since the reduction criterion is similar, and STATE-
SPACE analyses reachability of accepting locations.

From left to right in table 1 are the models’ names
followed by some information on each model (number of
clocks, parameters, and locations) and computation times
in seconds for each of the five algorithms. Additionally,
the number of different zones of accepting cycles found
by LAYERCOLLECTNDFSSUB is indicated next to it. Note
that the green and yellow cells are the fastest and the
second-fastest approaches respectively, for each of the two
categories of algorithms, and “TO” stands for a time-out
after 30 minutes.

The table is divided into two parts by a grey vertical
line so as to reflect the two distinct comparisons. The first
part comprises NDFS (Alg. 1) and its variants NDFSSUB
(Alg. 2) and LAYERNDFSSUB (Alg. 3). The other is a
comparison between LAYERCOLLECTNDFSSUB (Alg. 4)
and PRIOR with inclusion ([5]), which is a BFS (breadth
first search) based algorithm with optimised search order for
parametric zone inclusion. The PRIOR with inclusion is the
current efficient BFS algorithm in IMITATOR for reducing
state space explosion and improving termination.

In the first part of the table, NDFSSUB dominates
other algorithms, since it is the fastest on more than half
of benchmarks (17/25 cases). However, in 4 cases, LAY-
ERNDFSSUB is even faster. It is interesting that this layered
algorithm terminates very quickly in two cases where the
non-layered versions do not terminate. Clearly, layering can
prevent the algorithm to diverge. Note however, that in 4
other cases, the layering algorithm times out, while the
non-layered algorithms provide an answer quickly. In these
cases the zone graph is broad already in the top layers, so
apparently the strict NDFS versions find an accepting cycle
more efficiently.

NDFS and NDFSSUB suffer from the undecidability
and cannot terminate and reach the time-out in some bench-
marks. Algorithm LAYERNDFSSUB was proposed to cope
with the termination problem. We observe that this works in
two cases: coffee and F4. By exploring the state having
the largest zone first (especially true zone states), the layered
algorithm can avoid exploring infinite paths having smaller
zones in the beginning and thus they can also prune these
paths later. The timeout in 4 other cases is not caused by
infinite behaviour, but by exploring many branches in the
top-layers. Here a result would have been produced with
larger timeout value.

Let us interpret the second part of the table, where
we compare the termination of LAYERCOLLECTNDFSSUB
with PRIOR. The results of LAYERCOLLECTNDFSSUB
are similar to those of LAYERNDFSSUB: only 2 more
cases hit the timeout limit. Note that, for efficiency purpose,
all algorithms explore states on-the-fly so that in LAY-
ERNDFSSUB, we receive a zone result when some cycle
containing an accepting location is found, while LAYER-
COLLECTNDFSSUB would continue the search. PRIOR
exhibits some complimentary unterminated cases. In the
terminating cases, LAYERCOLLECTNDFSSUB is the fastest
in 9/26 cases, where PRIOR is the fastest in 8/26 cases.
The reason is probably that PRIOR uses full parametric
zone inclusion, which is sound for reachability but not
for liveness. We conclude that both the efficiency and the
termination behaviour of these algorithms are quite com-
plementary. However, note that these algorithms address a
different problem.

Finally, we note that the number of symbolic zones
collected during the exploration is widely different across
the benchmarks (ranging from 1-1026). Even in two of
the timed-out runs, LAYERCOLLECTNDFSSUB collected 2,
resp. 13, parametric zones that lead to an accepting cycle
(coffee and WFAS).

7. Conclusion

In this paper, we have proposed a new nested depth-
first search (NDFS) algorithm and its variants for model-
checking LTL properties of Parametric Timed Automata.
This algorithm features several reduction mechanisms: sub-
sumption, as in [18], early pruning, and a layered approach.
It addresses both the problem of existence of an accepting
cycle, and the synthesis of parameters that allow for a such
a cycle in a collecting version.

Our approach has the advantage of performing verifica-
tion as early as possible, instead of fully exploring a branch
of the parametric zone graph, which may be infinite. Exper-
imental results show the efficiency of the layered approach.
Subsumption and/or layering improves the efficiency of the
algorithm, and also the chance of termination. We noted
that the behaviour of subsumption with pure NDFS or with
layered NDFS are quite complementary.

Moreover, we show that such an approach can be used
not only for Parametric Timed Automata but also for models
featuring a progress measure which can be used to determine
layers. Another nice feature is that the absence of cycles in
the subsumed graph guarantees that no cycle exists in the
PZG either, thus providing a quick answer when the formula
holds, as exploited in [15].

Future work could investigate intricate exploration or-
ders that combine the strengths of NDFS with subsumption
and layering, to terminate (faster) in even more cases. Other
directions for future work include adapting this new nested
depth-first search algorithm to a multi-core setting, similar
to [14], [18]. Alternative parallel approaches will also be
studied, as described in the survey [8].

EC Algorithms STATESPACE Algorithms
ECC-EX ECCYCLES STATESPACEBenchmark

Models
#
X

#
P

#
L NDFS (s) NDFSSUB (s) LAYERNDFSSUB (s) LAYERCOLLECTNDFSSUB (s) #Zones BFS PRIOR incl (s)

BRP 7 2 22 0.231 0.237 0.035 0.043 4 176.535
coffee 2 3 4 TO TO 0.008 TO 2 0.006
critical-region 2 2 20 TO TO TO TO 0 TO
F3 3 0 18 0.026 0.026 0.006 0.003 1 0.255
F4 4 2 23 TO TO 0.007 0.006 1 TO
FDDI4 13 2 34 0.305 0.235 1.260 7.004 136 1.319
FischerAHV93 2 4 13 0.010 0.009 0.013 0.013 1 0.040
flipflop 5 2 52 0.010 0.010 0.010 0.012 1 0.015
fmtv1A1-v2 3 3 15 0.060 0.057 46.723 68.223 29 14.040
fmtv1A3-v2 3 3 15 0.063 0.062 302.061 1129.284 67 215.020
JLR13 2 2 2 TO TO TO TO 0 TO
lynch 2 1 18 0.007 0.007 0.010 0.010 5 0.016
lynch5 5 1 45 0.012 0.012 0.016 0.019 9 3.126
Pipeline-KP12-2-3 4 6 14 0.510 0.508 7.738 492.995 369 TO
Pipeline-KP12-2-5 4 6 18 0.791 0.787 TO TO 0 TO
Pipeline-KP12-3-3 5 6 19 1.960 1.962 TO TO 0 TO
RCP 6 5 48 0.024 0.013 0.023 0.034 7 10.095
Sched2.50.0 6 2 17 0.011 0.011 0.539 4.168 71 1.940
Sched2.50.2 6 2 17 0.011 0.011 TO TO 0 TO
Sched2.100.0 6 2 17 0.008 0.008 0.417 3.769 31 2.425
Sched2.100.2 6 2 17 0.008 0.008 TO TO 0 TO
simop 8 2 46 TO TO TO TO 0 TO
spsmall 11 2 51 0.244 0.053 0.310 36.549 1026 5.650
train-gate 5 9 11 0.016 0.015 0.047 0.268 15 0.018
WFAS 4 2 10 0.023 0.021 0.056 TO 13 TO

Table 1. EXPERIMENTAL COMPARISON OF NESTED DFS ALGORITHMS

References

[1] R. Alur and D. L. Dill. A theory of timed automata. TCS, 126(2):183–
235, 1994.

[2] R. Alur, T.A. Henzinger, and M.Y. Vardi. Parametric real-time
reasoning. In STOC, pages 592–601. ACM, 1993.

[3] É. André. What’s decidable about parametric timed automata? Inter-
national Journal on Software Tools for Technology Transfer, 2017.

[4] É. André, L. Fribourg, U. Kühne, and R. Soulat. Imitator 2.5: A tool
for analyzing robustness in scheduling problems. In FM, volume
7436 of LNCS. Springer, 2012.

[5] É. André, H.G. Nguyen, and L. Petrucci. Efficient parameter syn-
thesis using optimized state exploration strategies. In Z. Hu and
G. Bai, editors, Proceedings of the 22nd International Conference on
Engineering of Complex Computer Systems (ICECCS 2017), pages
1–10. IEEE, 2017.

[6] É. André, H.G. Nguyen, L. Petrucci, and J. Sun. Parametric model
checking timed automata under non-zenoness assumption. In NASA
Formal Methods - 9th International Symposium, NFM 2017, Moffett
Field, CA, USA, May 16-18, 2017, Proceedings, pages 35–51, 2017.

[7] R. Bagnara, P.M. Hill, and E. Zaffanella. The Parma Polyhedra
Library: Toward a complete set of numerical abstractions for the
analysis and verification of hardware and software systems. Science
of Computer Programming, 72(1–2):3–21, 2008.

[8] J. Barnat, V. Bloemen, A. Duret-Lutz, A.W. Laarman, L. Petrucci,
J.C. van de Pol, and É. Renault. Parallel model checking algo-
rithms for linear-time temporal logic. In Y. Hamadi and L. Sais,
editors, Handbook of Parallel Constraint Reasoning., pages 457–507.
Springer, 2018.

[9] P. Bezdek, N. Benes, J. Barnat, and I. Cerná. LTL parameter synthesis
of parametric timed automata. In Software Engineering and Formal
Methods - 14th International Conference, SEFM 2016, Proceedings,
pages 172–187, 2016.

[10] C. Courcoubetis, M.Y. Vardi, P. Wolper, and M. Yannakakis. Memory-
efficient algorithms for the verification of temporal properties. Formal
Methods in System Design, 1(2/3):275–288, 1992.

[11] A.E. Dalsgaard, A.W. Laarman, K.G. Larsen, M.C. Olesen, and J.C.
van de Pol. Multi-core reachability for timed automata. In FORMATS,
LNCS 7595, 2012.

[12] C. Daws and S. Tripakis. Model checking of real-time reachability
properties using abstractions. In TACAS, LNCS 1384, pages 313–329.
Springer, 1997.

[13] S. Evangelista and L.M. Kristensen. A sweep-line method for Büchi
automata-based model checking. Fundam. Inform., 131(1):27–53,
2014.

[14] S. Evangelista, A.W. Laarman, L. Petrucci, and J.C. van de Pol.
Improved multi-core nested depth-first search. In ATVA, LNCS 7561,
pages 269–283, 2012.

[15] F. Herbreteau, B. Srivathsan, T.-T. Tran, and I. Walukiewicz. Why
liveness for timed automata is hard, and what we can do about it.
In 36th IARCS Annual Conference on Foundations of Software Tech-
nology and Theoretical Computer Science, FSTTCS 2016, December
13-15, 2016, Chennai, India, pages 48:1–48:14, 2016.

[16] A. Jovanović, D. Lime, and O.H. Roux. Integer parameter synthesis
for timed automata. TSE, 41(5):445–461, 2015.

[17] M. Knapik and W. Penczek. Bounded model checking for parametric
timed automata. ToPNoC, 6900(5):141–159, 2012.

[18] A.W. Laarman, M.C. Olesen, A.E. Dalsgaard, K.G. Larsen, and J.C.
van de Pol. Multi-core emptiness checking of timed Büchi automata
using inclusion abstraction. In Computer Aided Verification (CAV’13),
pages 968–983, 2013.

[19] S. Schwoon and J. Esparza. A note on on-the-fly verification algo-
rithms. In TACAS, LNCS 3440, pages 174–190. Springer, 2005.

	Introduction
	Preliminaries: Parametric Timed Büchi Automata
	Clocks, parameters and constraints
	Parametric Timed Büchi Automata

	Subsumption in the Parametric Zone Graph
	Subsumption abstraction
	Preserving Accepting Runs with Subsumption

	Parametric Timed Nested Depth-First Search with Subsumption
	NDFS with subsumption for PTA
	Early pruning of the red search
	Starting the red search early: A layered NDFS

	Collecting NDFS for Parameter Synthesis
	Experiments
	Implementation
	Experimental results

	Conclusion
	References

